Global climate change and above- belowground insect herbivore interactions
نویسندگان
چکیده
Predicted changes to the Earth's climate are likely to affect above-belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above-belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above-belowground interactions between herbivores and other organisms; those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions.
منابع مشابه
Climatic unpredictability and parasitism of caterpillars: implications of global warming.
Insect outbreaks are expected to increase in frequency and intensity with projected changes in global climate through direct effects of climate change on insect populations and through disruption of community interactions. Although there is much concern about mean changes in global climate, the impact of climatic variability itself on species interactions has been little explored. Here, we comp...
متن کاملSpecies-specific defence responses facilitate conspecifics and inhibit heterospecifics in above–belowground herbivore interactions
Conspecific and heterospecific aboveground and belowground herbivores often occur together in nature and their interactions may determine community structure. Here we show how aboveground adults and belowground larvae of the tallow tree specialist beetle Bikasha collaris and multiple heterospecific aboveground species interact to determine herbivore performance. Conspecific aboveground adults f...
متن کاملRoot Herbivores Drive Changes to Plant Primary Chemistry, but Root Loss Is Mitigated under Elevated Atmospheric CO2
Above- and belowground herbivory represents a major challenge to crop productivity and sustainable agriculture worldwide. How this threat from multiple herbivore pests will change under anthropogenic climate change, via altered trophic interactions and plant response traits, is key to understanding future crop resistance to herbivory. In this study, we hypothesized that atmospheric carbon enric...
متن کاملGlobal Warming and Climate Change: Impact on Arthropod Biodiversity, Pest Management, and Food Security
Global warming and climate change will trigger major changes in diversity and abundance of arthropods, geographical distribution of insect pests, population dynamics, insect biotypes, herbivore plant interactions, activity and abundance of natural enemies, species extinction, and efficacy of crop protection technologies. Changes in geographical range and insect abundance will increase the exten...
متن کاملExperimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore.
Climate change and insect outbreaks are key factors contributing to regional and global patterns of increased tree mortality. While links between these environmental stressors have been established, our understanding of the mechanisms by which elevated temperature may affect tree-insect interactions is limited. Using a forest warming mesocosm, we investigated the influence of elevated temperatu...
متن کامل